Computational Approaches to Simulation and Optimization of Global Aircraft Trajectories
نویسندگان
چکیده
This study examines three possible approaches to improving the speed in generating wind-optimal routes for air traffic at the national or global level. They are: (a) using the resources of a supercomputer, (b) running the computations on multiple commercially available computers and (c) implementing those same algorithms into NASA’s Future ATM Concepts Evaluation Tool (FACET) and compares those to a standard implementation run on a single CPU. Wind-optimal aircraft trajectories are computed using global air traffic schedules. The run time and wait time on the supercomputer for trajectory optimization using various numbers of CPUs ranging from 80 to 10,240 units are compared with the total computational time for running the same computation on a single desktop computer and on multiple commercially available computers for potential computational enhancement through parallel processing on the computer clusters. This study also re-implements the trajectory optimization algorithm for further reduction of computational time through algorithm modifications and integrates that with FACET to facilitate the use of the new features which calculate time-optimal routes between worldwide airport pairs in a wind field for use with existing FACET applications. The implementations of trajectory optimization algorithms use MATLAB, Python, and Java programming languages. The performance evaluations are done by comparing their computational efficiencies and based on the potential application of optimized trajectories. The paper shows that in the absence of special privileges on a supercomputer, a cluster of commercially available computers provides a good option for computing wind-optimal trajectories for national and global air traffic system studies.
منابع مشابه
Aircraft deconfliction with speed regulation: new models from mixed-integer optimization
Detecting and solving aircraft conflicts, which occur when aircraft sharing the same airspace are too close to each other according to their predicted trajectories, is a crucial problem in Air Traffic Management. We focus on mixed-integer optimization models based on speed regulation. We first solve the problem to global optimality by means of an exact solver. The problem being very difficult t...
متن کاملAssessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories
In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...
متن کاملOscillation Control of Aircraft Shock Absorber Subsystem Using Intelligent Active Performance and Optimized Classical Techniques Under Sine Wave Runway Excitation (TECHNICAL NOTE)
This paper describes third aircraft model with 2 degrees of freedom. The aim of this study is to develop a mathematical model for investigation of adoptable landing gear vibration behavior and to design Proportional Integration Derivative (PID) classical techniques for control of active hydraulic nonlinear actuator. The parameters of controller and suspension system are adjusted according to be...
متن کاملOptimized Fuzzy Logic for Nonlinear Vibration Control of Aircraft Semi-active Shock Absorber with Input Constraint (TECHNICAL NOTE)
Landing impact and runway unevenness have proximate consequence on performance of landing gear system and conduce to discomfort of passengers and reduction of the pilot’s capability to control aircraft. Finally, vibrations caused by them result in structure fatigue. Fuzzy logic controller is used frequently in different applications because of simplicity in design and implementation. In the pre...
متن کاملFormal Verification of Conflict Detection Algorithms for Arbitrary Trajectories
This paper presents an approach for developing formally verifiable conflict detection algorithms for aircraft flying arbitrary, nonlinear trajectories. The approach uses a multivariate polynomial global optimization algorithm based on Bernstein polynomials. Since any continuous function on a closed interval, such as an aircraft trajectory within a closed interval of time, can be uniformly appro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Aerospace Inf. Sys.
دوره 13 شماره
صفحات -
تاریخ انتشار 2016